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Abstract—The market share of NAND flash-based storage devices (NFSDs) has rapidly grown in recent years since many
characteristics, such as non-volatility, low latency, and high reliability, meet the requirements for various types of storage devices.
However, theunique characteristic ofNAND flashmemories (NFMs), erase-before-write, causesproblems forNFSDs fromaperformance
perspective. Specifically, performance degradation is incurred by extra operations that serve to hide the bad characteristics of
NFMs. In order to resolve this problem, many attractive methods have been proposed. Various algorithms for flash translation layers
(FTLs) are representative methods that provide space redundancy to NFSDs for better performance. However, the amount of space
redundancy is limited by the capacity of NFMs and thus, space redundancy is still insufficient for improving the performance of NFSDs.
Consequently, a new type of redundancy, termed temporal redundancy, has recently been introduced for NFSDs. More precisely,
the idleness of NFSDs is exploited so as to precede extra operations for NFSDswhile minimizing the overhead of extra operations. In this
paper,weproposeanadaptive time-outmethodbasedon theHidden-MarkovModel (HMM) toefficiently utilize idle periods. In addition,we
also suggest a simple scheduling scheme for extra operations that can be customized for general FTLs. The experimental results
demonstrate that the proposed method yields performance improvements in terms of average write latency and peak latency, 74% and
76% better than the existing method, respectively, and approaching within average 9% and 5% of the optimal case, respectively.

Index Terms—Solid-state disk, NAND flash memory, idle-time

1 INTRODUCTION

AS THE annual amount of created, accessed, and copied
information has been dramatically increasing [1], the

need for dense and reliable memory has become a priority.
Consequently, NAND flash memories (NFMs), one of the
densest non-volatile memories, are widely used in a variety
of applications and occupy a large portion of the entire
memory market.

In many computing systems, NFMs are employed as
secondary storage devices due to their several advantages
over traditional magnetic disks. Since NFMs can be fully
accessed electronically, elimination of all mechanical parts
and seek the location of data is possible. Therefore, NAND
flash-based storage devices (NFSDs) can have a smaller form
factor, shorter response time, and higher shock resistance.

Two features of NFSDs are often considered to be the
biggest obstacles that hinder the complete replacement of
HDDs with NFSDs. The first obstacle is the higher cost-
per-bit of NFSDs, which is expected to be solved in the near

future due to the advanced process technology. The second
obstacle is the erase-before-write feature, which is a unique
characteristic of NFMs. NFMs do not intrinsically support
in-place update. Every program command to an NFM
requires a preceding erase command to the target location.
Furthermore, the unit of an erase command is a block,which is
a group of pages. As such, an update to a single page may
cause every page containing valid data in the block to be
copied to another block.

To hide this problem from the host system cooperating
with NFSDs, many researchers have proposed an intermedi-
ate software layer, called aflash translation layer (FTL) and an
FTL performs diverse extra operations, i.e. garbage collection,
wear-leveling and etc. Numerous studies on FTLs have been
devoted to reducing the cost of extra operations with various
mapping granularities and mapping algorithms [2]–[8].

Most FTLs use over-provisioning blocks, also called log
blocks or update blocks, to delay or reduce the cost of the extra
operations of NFMs. FTLs forward updated data to the over-
provisioning blocks in order to reduce extra operation over-
head. In other words, existing FTLs utilize space redundancy
to improve the performance of NFSDs.

In this work, we use temporal redundancy by exploiting
the proper idle periods based on the adaptive time-out
method for improving the latency of NFSDs. In fact, tradi-
tional HDDs have already exploited idle time for power
reduction [9], [10].Unfortunately, previous research onHDDs
cannot be directly applied to NFSDs for two reasons.

First, in performance perspective, the power reduction
attained for HDDs is a supplementary objective. Therefore,
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if a required performance level is defined, a degree of aggres-
siveness in exploiting idle-time can be found for HDDs.
In contrast, NFSDs utilize idle periods to enhance their per-
formance. Thus, operations performed during idle-time are
not optional, but turn into essential jobs from the perspective
of performance.

The second reasonwhyHDDresearch cannot be applied to
NFSDs pertains to the amount of performance penalties
following the utilization of an idle period. The only penalty
in HDDs is the wake-up penalty which usually has a fixed
length. However, the extra operations of the FTL, which are
performed by an NFSD during its idle-time, have a large
variation in length. Therefore, more sophisticated methods
are required to exploit the idle-time of NFSDs.

In this paper,wepropose an idle-time exploiting algorithm
for NFSDs. We categorize issues related to the utilization of
idle-time inNFSDs into two categories: “when” and “which”.
For “when,” the proposed algorithm determines useful idle
periods. Theproposedmethod effectivelyfilters out useless or
harmful idle-time1 based on an adaptivemethod that uses the
Hidden-Markov Model (HMM).

“Which” is a problem defined by selecting and scheduling
extra operations to be executed within the chosen idle-time.
“Which” strongly depends on the design objective to be
accomplished by introducing temporal redundancy to
NFSDs. Since our objective is an improvement in perfor-
mance, we customized our method appropriately so as to
achieve this goal.

The contribution of thiswork is two-fold. First, we propose
an adaptive idle-time exploiting algorithm that can effectively
select proper idle periods from various access patterns. Sec-
ond, the algorithm contains a simple scheduling method that
is proven to be the best method among our candidates. We
also demonstrate the effectiveness of our algorithm in a
quantitative manner by integrating our algorithm into a
representative hybrid-mapping FTL.

2 BACKGROUNDS

2.1 Usefulness of Exploiting Idle-Time
We will first define the notations used in our work. Two
timing diagrams representing the behavior of NFSDs with
idle-time are shown in Fig. 1; represents the length of an
idle period from the moment the service of the th
request is completed to themoment the next request is issued.
This idle period can be utilized by NFSDs as their temporal
redundancy for performance improvements.

The term in Fig. 1 denotes the latency required to notify
the host system that the th request has been completed. The
latency consists of a waiting phase, an extra phase, and a data
phase, which are depicted in Fig. 1 as rounded black rectan-
gles, rounded rectangles with diagonal lines, and rounded-
white rectangles, respectively. The length of awaitingphase is
measured as the time period over which a request is residing
in the request queue of the NFSD. In other words, a request
waits for its service in the request queue during its waiting
phase until the NFSD finishes all NFM commands, data
transfer, and other jobs for the previous request. This phase
is skipped if the NFSD is idle when the request is issued as in
the case of th request in Fig. 1(a).

Extra and data phases consist of NFM commands. A data
phase of a request is the time period required to access and
transfer requested data from/to an NFM. Therefore, if a
request is given, the length of its data phase can be simply
computed according to the specification of the NFM and the
length of the data given by the host system.However, an extra
phase of the th request, , has a variable length since
the status of an NFM determines the amount of NFM com-
mands. The extra phase may include erase commands to
reclaim used blocks or copy-back commands to move valid
data from one page to another page. The extra phase can be
omittedwhen there are enough free pages to receive incoming
data or the request is a read request. Otherwise, the extra
phase must precede the data phase, to reclaim pages and
blocks following the algorithm of the FTL.

The effect of exploiting idle periods is shown in Fig. 1(b).
Unlike the case of Fig. 1(a), is utilized for extra commands

Fig. 1. Timing diagrams of an NFSD experiencing idle-time (a) if it does not exploits idle-time, and (b) if it exploits idle-time.

1. Useless or harmful idle time is too short to be utilized for extra
operations.
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for the th request. For the case of the th request
in Fig. 1(b), no extra phase is required since free space is
reclaimed during the previous idle-time.

The term indicates the time-out threshold value,
which means that, since an idle period has begun, the
execution of extra commands is initiated if there is no
request until . Unfortunately, due to the longer execution
time of extra commands when compared to , the

th request experiences a waiting phase that results in
longer latency than that of the th request in Fig. 1(a).
However, the latency of the th request depicted in
Fig. 1(b) is reduced when compared to that of Fig. 1(a) due
to the previously executed extra commands. Finally, even
though the latency of the th request increases slightly,
since the latency of the th request is significantly
shortened, the average latency of the two requests is
reduced.

It should be noted that, throughout this paper, we assume
that the host system can be notified upon the completion of
service for one request only when all the required phases are
completed. This assumption is essential in order to guarantee
data consistency between an NFSD equippedwith its volatile
cache and its host system in the event of sudden power
outage.

2.2 Flash Translation Layer
FTLs can be classified by theirmapping granularity, since this
characteristic is one of the key factors that decide both the
overall performance of FTLs and the size of themapping table.
Most FTLs are based on a block-level mapping table and
utilize a small number of over-provisioning blocks that are
managed in page-level. Such FTLs are called hybrid-mapped
FTLs [4]–[7].

BAST [4], which is our target FTL, is a representative
hybrid-mapped FTL. Like other hybrid-mapped FTLs, it is
based on a block-level mapping table for the data blocks and
utilizes a page-level mapping table to manage over-provi-
sioning blocks (log blocks). In BAST, one over-provisioning
block is related to only one data block.

Due to the restriction on the mapping table size and the
capacity of NFSDs, the ratio of over-provisioning blocks to
total blocks is usually limited. In addition, if a log block is full
and needs to be written, it must be merged with its corre-
sponding data block and reclaimed as a new log block. To
complete this task, BAST provides two different types of
merge operations,which are fullmerge operations and switch
merge operations. Even though they require different condi-
tions to be induced and incur different sequences of NFM
commands, both of them include one or more erase com-
mands which affect performance severely due to long execu-
tion time. Furthermore, in case of full merge operations, they
usually include a large number of page copy commands
which also degrade performance.

Even if page-mappedFTLs [2], [3], [11],which are expected
to outperform hybrid-mapped FTLs, are employed inNFSDs,
they cannot avoid extra operations caused by the character-
istics ofNFMs, either. Therefore, idle-time exploitation,which
can hide the latency of extra operations from end-users, can
further improve the performance of NFSDs with any types
of FTLs.

3 RELATED WORK

While the notion ofNFSDsutilizing idle-time is not new, there
have only been a few studies conducted on the subject. In [12],
Seong et al. proposed a hardware architecture that NFSDs
manage every write request from host in the background
during idle-time. In other words, data from the host is written
to faster volatile memories such as DRAM, while the moving
of data to NFMs is performed in background. To maintain
read performance, the hardware architecture is equipped
with a foreground operation manager that pauses back-
ground operations to service read requests. However, with
the problems like data consistency caused by the volatility,
this architecture is not optimized to exploit idle periods. In
terms of “when,” instead of determining efficiency of an
idle period, it just executes commands of NFMs whenever
possible. Therefore, it is a greedy time-out method with zero
time-out threshold value. Also, they did not consider the
scheduling of extra operations in the perspective of “;which”;.
Furthermore, future requests hardly benefit by the exploita-
tion of idle-time, since it executes operations only required by
the current request.

On the other hand, FlexFS, in [13], includes a file system for
MLC NFMs. One unique characteristic of MLC NFMs is that
someof their portions can beused as SLC-like pageswhich are
much faster than normal MLC pages. FlexFS uses this char-
acteristic to employ a part of NFMs as fast as SLC NFMs.
However, data in faster pages should be eventually moved to
slower pages in a process called migration, since the number
of SLC-like pages is limited. Therefore, the target task of
“which” in FlexFS is the migration. In addition, to schedule
migrations, FlexFS adaptively adjusts their execution time by
adjusting the amount of migrated data. It is done by predict-
ing the actual length of the future idle-time via a weighted
moving average. The purpose of the adjustment is to avoid
performance penalties incurred by migration during
idle-time.

As an answer for “when,” FlexFS filters out useless idle-
time with a simple time-out policy with a fixed . One
unique aspect of FlexFS’s “when” is the triggering interval,
which serves to reduce performance penalties incurred by the
execution time of extra commands during an idle period, like
in the case of thewaiting phase of the th request in Fig. 1(b).
FlexFS triggers the execution of commands during idle-time
according to the triggering interval.

While FlexFS improves the performance of NFSDs with
MLCNFMs, it cannot be generally applicable toNFSDsdue to
two major problems. First, the future idle-time cannot be
accurately predicted by a weighted moving average due to
the non-stationarity of storage access patterns. Furthermore,
the work amount for most of extra operations cannot be
controlled as in migration. In migration, its work amount is
highly controllable since amigration consists of page copying
whose execution time is constant. In contrast, some other
operations, whosework amount cannot be quantized, should
be completed during idle periods. For instance, a merge
operation cannot be quantized, since the whole valid pages
in a target block should be copied to a new block. The second
major problem in FlexFS is that it is conservative in utilizing
the idle period. In detail, for a given idle period, it uses a long
time-out threshold and schedules the migration periodically.
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Therefore, the utilization of idle-time may be reduced if the
scheduling interval is not appropriately set.

Real-time systemswithNFSDs also exploit idle periods for
garbage collections [14], [15]. In these systems, the deadline of
each transaction is known. Therefore, the length of an idle
period can be given precisly and the possibility of the latency
penalty caused by executing tasks during idle-time is very
small. Our target system, however, does not have the deter-
ministic deadline. Therefore, an accurate prediction scheme to
estimate the length of idle periods should be adopted to
reduce the probability, which makes our problem more
complicated.

4 PRELIMINARIES

4.1 Characteristics of Idle Periods
It is important to understand the characteristics of idle periods
given to NFSDs in this work. Besides the fact that the patterns
of idle periods are very hard to be predicted if the systemdoes
not have deterministic deadlines, “bursty” access pattern of
storage devices [16] is one of ourmotivations. By “bursty,”we
mean that the access patterns for NFSDs may include two
clearly classfied types of idle periods.

The first type of idle periods (short idle periods) are very
short and found between bursty requests while the second
type (long idle periods) are very long and found between
groups of burst accesses. We assumed the first type of idle
periods shouldbefilteredout andonly the second type should
be exploited since the length of the first type is too short to
execute extra operations which consist of NFM commands
spending very long time despite their appearance frequency.

4.2 Service Penalty and Aggressiveness of Idle-Time
Exploitaition

Idle-time exploiting methods eventually incur performance
degradation, since the idle-time prediction cannot be perfect.
The performance degradation is a subset of a waiting phase
introduced in Section 2.1 since the next request shouldwait in
a queue until the hardware resources utilized by extra opera-
tions executed during idle-time are released. Specifically, we
define this kind of waiting phase as a service penalty of the
request in this work, and refers to the service penalty of
the th request.

The service penalty is very similar to the wake-up penalty
which is a critical metric in the HDD shutdown problem.
However, it might be much more complex than the HDD
shutdown problem which schedules only when to shutdown
and wake-up the HDD. Unlike the shutdown of HDD which
does not perform any particular operations, NFSDs actually
execute operations and the operations occupy hardware
resources. It means that, tominimize service penalties, amore
tightly coupled scheduling policy is required and the policy
should be responsible for controlling the aggressiveness of
idle-time exploiting method.

4.3 Adaptive Threshold Value
Fig. 2 shows the latency of an NFSD with different input
access patterns when various fixed threshold values are
employed. In this case, the NFSD executed some useful tasks
when the idle periodwas longer than thefixed thresholdvalue.

According to the input access patterns in Fig. 2, the optimal
fixed threshold value, which maximizes performance, varies.
Moreover, according to our simulation, a common trend is
hardly found for the patterns.

Through this simulation, it can be inferred that in real
computing systemswith time-varying access patterns, a fixed
threshold value does not guarantee the best long-term per-
formance. Thus, to find the “when” of the proposed method,
weneed an adaptivemethod todynamically track the optimal
threshold value during runtime.

5 PROPOSED METHOD

5.1 Motivating Example
In addition to the selection of proper idle periods, scheduling
of extra operation during idle-time is also a critical factor for
determining performance improvement. However, achieving
optimality of their scheduling is nearly impossible without an
intensive offline analysis. In other words, the optimal sched-
uling policy requires perfect information about future input
trace and the status of an NFSD.

Instead of nearly impossible optimal scheduling policy,
our method is equipped with simple heuristic scheduling
method inspired by a simple example shown in Fig. 3. First
of all, we assume that an NFSD has four different instances of
extra operations in its extra operation pool. Each instance of
extra operations is depicted by E(n) and thewidth of each box
indicates the execution time. Additionally, we also assume
that each instance E(n)must be preceded byD(n), which is the
data phase of the th request R(n) to prevent theNFSD from
malfunctioning as mentioned in Section 4.2. The arrival time
of request is represented by dashed lines.

The timing diagram of the NFSD that does not exploit idle-
time is depicted by the timing diagram labeled asWithout idle
exploitation. By our assumptions, the latency of all requests is
degraded by extra operations.

The second timing diagram labeled as Shortest-first shows
the NFSD with the idle-time exploitation method utilizing
shortest-first (SF) scheduling policy. The policy executes extra
operations in the ascending order of their execution time.
Even though its total execution time is reduced thanks to the

Fig. 2. Latencyof anNFSDwith various input accesspatternsand various
time-out threshold valuesnormalized to the latencyof eachaccesspattern
with .
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utilization of idle period, the latency for request R(0) is not
improved since E(0) should be executed before D(0).

The last timing diagram shows theNFSDwith longest-first
(LF) scheduling policy, which schedules extra operations in
the opposite way to SF policy. Due to the execution of E(0)
during idle-time, R(1) and R(2) suffer from the overhead
incurred by extra operations. However, R(1) is handled
quickly, since a portion of E(1) is handled during idle-time
between R(0) and R(1).

Even though the latency of each request is different from
each other, SF policy and LF policy shows the same total
execution time. It is because two NFSDs do the same amount
of operations, i.e., three extra operations and three data
phases. However, in terms of both average and peak latency,
LF policy outperforms SF policy for the above example. This
motivates us to use LF policy as our scheduling policy.

The effect of LF policy is simple. At any moment, it can
guarantee that average time required to execute extra opera-
tion is minimum. If every instance of extra operation has the
same probability to be executed during an extra phase and
must be executed eventually, then the expected length of an
extra phase can also be minimized, thus both average and
peak latency can be minimized.

5.2 Overview of Proposed Method
The overall structure of an NFSD employing the proposed
method is shown in Fig. 4. Our method called idle-time
exploiter (ITEX) is implemented in software and cooperates
with an FTL.

ITEX consists of two sub-modules: a decisionmodule anda
background operation manager. The decision module is
responsible for the “;when”; of the method. It detects both
request issues from the host system and idle periods to
identify useful idle periods. To determine the usefulness of
an idle period, the decision module adopts an adaptive time-
out-based scheme with the information such as and

from other modules of the NFSD. The length of an extra
phase, is given by the FTL. The FTL records the time to
execute extra operations while it translates address from
logical tophysical andpasses the recorded time to thedecision
module. is directly measured by the decision module

from the moment an request is issued if the background
operation manager is operating.

The background operation manager schedules the extra
operations for the idle periods and it corresponds to the
“which” of our problem formulation. It recieves the list of
extra operations from the FTL and schedules themduring idle
periods selected by the decisionmodule.Moreover, it controls
the aggressiveness by a parameter called restriction level, .
It defines the portion of the used blocks over the total over-
provisioning blocks. Therefore, as decreases, the back-
ground operation manager becomes more aggressive in
executing extra operations, since it will executes until only

% of blocks is occupied over the total over-provisioning
blocks. To figure out howmany blocks are currently used, the
background operation manager receives the portion of used
over-provisioning blocks from the FTL.

The operational steps of ITEX are described in Fig. 5. First,
at the end of each request’s handling, the decision module
receives themeasured from theFTLanddetectswhether
the current idle periods is longer than or not. If the idle
periods is shorter than , the decision module initiates
the feedback routine. Since ourmethod is based on theHMM,
the feedback routine observes the current symbol which is the
measured information. Of course, since it does not execute
any extra operation, is set as zero. After the feedback
routine, the new is updated. The details of the algorithm
will be explained in the next section.

If the idle period is longer than , the background
operation manager takes the role of control. It checks the list

Fig. 4. Overview of proposed system.

Fig. 3. Comparison of two different idle-time exploiting method.

Fig. 5. Flow chart of ITEX.
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of extra operations and schedules them for the FTL.At the end
of execution of each scheduled extra operation, it executes
another extra operation only if three conditions–the current
idle period does not end, is not reached and some extra
operations are left–are satisfied. If a request is issued before
currently executed extra operation finishes, the decisionmod-
ule measures and initiates the feedback routine.

5.3 Decision Module
Our decision module calculates the time-out threshold value,

based on the HMM. We describe the details of HMM
modeling in the following sections.

5.3.1 System Modeling Based on the HMM
TheHiddenMarkovModel (HMM) is different froma regular
Markov model in the perspective of visibility of its states.
Since the states are not visible while the outputs (symbols) of
the HMM can be observed, the sequence of state, , can only
be guessed from the sequence of symbols, .We also have to
notice that two distributions are required, which are the state
transition probability distribution and the observation
symbol probability distribution , for futher explaination.
indicates the probability of transition among states, while

shows the probability that each symbol is observed. If initial
conditions are added, the combination of and can repre-
sent the characteristics of the whole system.

To describe our system, which is an NFSD, we focused on
the first problem among three basic problems using HMMs
introduced in [17]. Theproblem focuses on computation of the
most probable output sequence with negligible overheads by
using an algorithm called forward algorithm and forward
probabilities.

Our method uses the HMM to model an NFSD in the
perspective of idle period it uses. However, we do not esti-
mate the actual length of idle perids, since discrete represen-
tation of continuous values may cause problems, such as
state explosion or extremely high computational complexity.
Instead, we attempted to estimate the status of the NFSD
which can be easily represented in a discrete way with infor-
mation that can be gathered from the NFSD itself. To be spe-
cific, the discrete states are represented by the hidden states,
while information fromNFSD is used as symbols of theHMM.

Wefirst define three states tomodel the changes in . The
three states–Inc, Dec, and Stay states shown in Fig. 6 represent
increasing, decreasing, andunchanging , respectively. For
instance, if our system is in the Inc state, increasing is
advantageous in exploiting idleness. Since states change only

instead of defining the actual length of an idle-time, our
method is expected to fully utilize sudden long idle-time.
Also, the amount of changes at each state, , is an
important factor to trade-off the adaptation speed and the
control resolution. We experimentally found the best value
which will be discussed in Section 6.4.

Along with the state, the state transition condition of our
model is defined as symbols given in Table 1. A symbol is a
3-tuple vector whose elements are , , and , which are
boolean variables computed by Eqs. 1, 2, and 3. and

in these equations represent the time duration of
the service penalty and extra phase of the th request,
respectively.

>

>

>

Since we use two timing variables, and , which
can be either zero or bigger than zero, all combinations of two
variables can be represented by two boolean variables, and

. However, for the situation that both boolean variables are
true, we need to specify the status of the NFSD, thus is
added to indicate the sumof and iswhether bigger
or smaller than that of the previous time stamp, . More
detailed description of each variable is given below.

: This value is true when the NFSD suffers from service
penalties ( > ). As a result, it means that the current
exploitation of idleness is too aggressive.

: This value indicates the situation that extra phases
degradeperformance ( > ). Therefore, to reduce the
effect, the more aggressive ITEX would be helpful.

: This value is taken into consideration only above two
variables are all true. More specifically, it is true when
both and are bigger than zero and the sum of
them is bigger than that of and . As a
result, if it is true, it means that performance degradation
at the current time stamp is larger than that of the previ-
ous time stamp.

By combining the above three boolean variables, the
decision module composes the following symbols shown in
Table 1.

PosP is the symbol observedonlywhen is true and is
false as shown in Table 1. As explained above, it means
that ITEX is too aggressive. Therefore, to be conservertive,
a state transition ismade to the Inc state so as to generate a
longer .
PosE is the symbol representing the opposite situation to
PosP. Therefore, a state transition to theDec state ismade.

Fig. 6. State transition diagram of our modeling by the HMM.

TABLE 1
Definition of Symbols
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PosC is observed when all of the three boolean variables
are true. It means that the sum of and is
increasing. It implies that the current direction of chang-
ing is wrong, if the current state is Inc or Dec.
Therefore, the decision module changes its state to the
opposite side, like from Inc toDec or fromDec to Inc.Note
that, if a PosC symbol is observed when the current state
is Stay state, our method makes a transition to the Dec
state since we want to become more aggressive in utiliz-
ing idle periods.
NegChas an oppositemeaning to that of PosC. Therefore,
it does not incur a state transition to further reduce the
latency.
Lastly, a Zero symbol incurs state transition to the Stay
state since it is the most desirable status of an NFSD.
Hence, we do not need to change the threshold value.

5.3.2 Estimation and Feedback
During the estimation step, which is depicted in Fig. 5, we
adopt the forward probability of the HMM, the state transi-
tion probability distribution and the symbol probability
distribution . By computing forward probability, the deci-
sionmodule computes themost probable next symbol and the
next state transition according to that symbol.

As explained also in Fig. 5, the feedback step is executed
regardless of whether or not the idle period is exploited.With
the actual symbol composed by and , an actual
state transition is figured out and and are updated. Since
this feedback step is performed for every request, the thresh-
old value and probability distributions and , can be
rapidily changed so as to adapt to the input trace.

5.4 Background Operation Manager
The role of the background operation manager is to schedule
extra operations and execute them during idle periods which
are selected by the decision module.

As shown in Fig. 4, the background operation manager
interacts with the FTL for performing extra operations. More
precisely, the FTL provides the list of extra operations to be
performed, then the background operation manager sche-
dules them. Finally, the FTL performs the scheduled extra
operations until one of the three conditions shown in Fig. 5 is
satisified.With this interactive cooperation of the background
operationmanager and the FTL, the FTLmanages the address
mapping table exclusively for the data consistency.

Scheduling of proper extra operations is performed based
on their execution time as mentioned in Section 5.1, which is
the LF policy. However, it is designed to adopt other policies
such as SF policy for future extension and the comparison
purpose.

One additional thing that should be considered by the
background operation manager is . In fact, securing
enough over-provisioning blocks during idle periods pro-
vides better performance by reducing the number of extra
phases. However, at the same time, it may incur not only
service penalties but also shortened life-time of NFMs since it
should include NFM erase commands and is executed in the
speculative way.

Consequently, is a simple and effective value that
provides the controllability for performance improvement

including the amount of service penalties and the life-time
of NFMs by restricting the aggressiveness of the background
operation manager.

5.5 Configuring an ITEX
To configure an ITEX, three parameters are required– ,

, and scheduling policy. For convenience, a combination of
the parameters will be presented as { , , scheduling
policy}. For example, {2, 20, LF} denotes that the ITEX starts to
execute extra operations when an idle period is longer than
2 ms with longest-first policy. Additionally, the background
operation manager will not operate when the portion of
occupied over-provisioning blocks is less than 20%.

6 EXPERIMENTS

6.1 Experimental Setup
In order to evaluate the performance of the proposedmethod,
we implemented a trace-driven simulator that includes the
FTL with ITEX, timing information, and the configuration of
the NFMs. The target FTL is BAST [4], which is one of the
representative hybrid-mapped FTLs. The simulator reports
various metrics introduced in the next section including the
latency, the number of executed erase commands, timing
information of each access such as and , and etc.

The timing information of the NFMs conforms to the
specifications outlined in [18]. Important timing information
is given in Table 2. The simulator is equipped with the multi-
channel/multi-way (specifically, 8-channel/4-way) architec-
ture like the one introduced in [19] and its FTL utilizes the
hardware resources in the way proposed in [20].

To drive the simulator, we prepared various input traces,
which are shown in Table 3. All of these traces are collected by
DiskMon [21] while applications are running. Especially, VM
trace contains the smallest amount of idle-time among all
traces. Random, VM and Web traces can be classified into
random access traces since their average number of written
sectors are relatively small.

Before starting simulation, the simulator fills NFMs by
writing data to incur many extra operations to obviously
show the effect of the proposed method. The data is not only
randomly located one but also located at the logical addresses
accessed by the input trace. Additionally, for a comparison,
experiments are conducted using other methods as follows.

Normal: It is simply a normal FTLwithout exploiting idle
periods.
FlexFS: It is the fixed scheme proposed in [13]. Its
decision module has a fixed and the
triggering interval is 20 ms. Originally, in [13], 15 ms is
proposed for the interval. We need to modify this since
one unit of extra operation is different from original
FlexFS. Furthermore, we adopt only its decision module

TABLE 2
Timing Information of NFMs
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and use our background operation manager to cooperate
with an FTL, since FlexFS is a file system designed for a
certain architecture of NFSDs.
Fixed_Optimal: It is the fixed scheme obtained by
time-consuming offline simulation by sweeping from
1 to 20 ms. The optimal values are selected in the
perspective of the shortest average write latency and
they are depicted in the sixth column of Table 3 when

is used. This method is called static ideal one
since it gives the best performance when a static is
applied.

6.2 Evaluation Metrics
To prove the efficiency of the proposed method, we define
several metrics as follows.

Average write latency ( ) is a goodmetric to measure the
macroscopic capability of NFSDs. Especially, the write
latency is used since write requests are usually severely
affected by expensive extra phases.
Peak latency per sector ( ) is defined as themaximum
latency per one sector writing. This metric is important,
because some SSDs suffer from the phenomenon called
freezing which means that users experience intermittent
suspensions of systems due to their NFSDs and is caused
by long peak latencies.
Erase count ( ) is one of essential metrics, since NFMs
have limited life-time. The total number of erase opera-
tions, which can be controlled by of the background
operationmanager, should be compared to estimate their
life-time.
Utilizable length of idle-time ( ) is defined as the total
length of utilizable idle-time which are selected by the
decisionmodule. Therefore, thismetric is used to evaluate
the efficiency of the decision module. If the decision
module uses the time-out policy, it can be computed as

>

where is the length of an idle period before the th
request is issued and is the time-out threshold value
at that time.
Erase-aware latency improvement ( ) is a newly
defined metric to show the ratio of the improvement

in latency to the cost for the improvement. It is
defined as

where is the number of total requests, and
are the latency and the number of erase com-

mands of an FTL that does not exploit idle-time, respec-
tively. The last added one in the denominator prevents
the equation from divergence. According to Eq. 5, the
physical meaning of is improvement in latency over
additional erase commandsper request. Erase commands
are accumulated as more requests are induced, thus the
number of handled requests should be considered. Higher

is preferred since higher performance improvement
with the smaller cost means higher efficiency.

We conducted parameter sensitivity analysis and optimi-
zation of ITEX to find the optimal configuration which is
{1, 10, LF}. The performance comparison with other method
based on the definedmetricswill be shown in the next section.
After the performance comparison, the effects of varied para-
meters will also be presented.

6.3 Performance Comparison
6.3.1 Average Write Latency
Table 4 shows how much the proposed ITEX, which is
referred as Adaptive, improves the average write latency. On
average, of ITEX is 87% shorter than that of Normal.
Compared with the static ideal case of Fixed_Optimal, ITEX
gives only 8% longerwrite latency. If VMtrace is excluded, the
difference between ITEX and Fixed_Optimal is only 1.6% at
most. The case of VM trace includes the smallest amount of

TABLE 4
Real Values of (ms)

TABLE 3
Used Trace Information
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idle-time among traces as shown in Table 3. In such a case,
ITEX should incur service penalties due to its speculative
execution of extra operations during short idle periods of VM
trace. In spite of the inefficiency of adaptation for VM trace,
ITEX accomplishes 37% improvement in compared to
Normal, whereas FlexFS fails to achieve any improvement
due to its fixed long .

With the considration of average written sectors in Table 3
and timing of NFMs in Table 2, it can be said that ITEX and
Fixed_Optimal eliminate most of extra operations affecting
especially for Random andWeb traces. For other traces, ITEX
and Fixed_Optimal reduce extra operations compared to
Normal and FlexFS but do not completely remove them.

6.3.2 Peak Latency
Table 5 shows values of four schemes. ITEX gives about
83% shorter than Normal on average. Furthermore, for
the former three traces, i.e. Photoshop, RandomandSeq, ITEX
and Fixed_Optimal show the same . It means that
ITEX executes extra operations affecting as much as
Fixed_Optimal does during idle-time.

Futhermore, Table 5 shows that some traces suffer from the
maximum of our NFSD which is 18.7 ms and includes
one page program, 64 page copy and 2 erase oprations
without idle-time exploitation. It means that the NFSD may
incur frequent freezing phenomena when requests with large
data arrive. ITEX and Fixed_Optimal shows much lower

, thus reduced number of freezing phenonmenons can
be expected.

However, for VM andWeb traces, ITEX fails to achieve the
same as that of Fixed_Optimal. In the case of VM trace,
like in the previous section, ITEX is not able to secure the
same amount of idle-time as Fixed_Optimal does because of
insufficient idle-time of the trace. In other words, ITEX exe-
cutes fewer extra operations than Fixed_Optimal due to
smaller , thus some extra operations affect by incur-
ring larger than zero.

On the other hand, ITEX for Web trace shows even larger
gapwith Fixed_Optimal in spite of the longest idle-time of the
trace. Based on our analysis, it is because ITEX exploits idle-
time more aggressively than Fixed_Optimal does. Therefore,

degrades instead of . It is also proven by the fact that
the average of ITEX for Web trace, which is 13.58 ms, is
shorter than that of Fixed_Optimal, which is 17 ms.

6.3.3 Utilizable Idle-Time
To compare decision module’s efficiency of ITEX with other
schemes, Table 6 shows the values of . Results for Normal
scheme are omitted since it does not utilize any idle-time.
ITEXshowsonly average 4%shorter thanFixed_Optimal.
It is due to the adaptability of changing its dynamically

according to varying access patterns. Furthermore, for Ran-
dom trace, ITEX gives longer than Fixed_Optimal, which
means it gives more chances to exploit idle-time to the back-
ground operation manager.

Among results, there are two extreme cases in terms of
of FlexFS. First, in the case of Web trace, FlexFS shows the
longest . This canbeunderstoodby the average shown
in Table 3. Web trace has the longest average among the
traces and it actually indicates the length of the second type of
idle periods introduced in Section 4. Therefore, FlexFS gives
comparable only for traces such as Web and Photoshop
since the most of second type idle periods in those traces are
longer than of FlexFS.

On the other hand, VM trace shows the opposite extreme
case. FlexFS shows zero for the trace and it explains why
FlexFS fails to accomplish any performance improvement as
shown in Section 6.3.1. This is because all second type idle
periods ofVM trace are shorter than of FlexFS andfiltered
out unlike Web and Photoshop traces.

6.3.4 Life-Time of NFMs
The life-time ofNFMs is inversely proportional to the number
of erase operations NFMs experience. Table 7 shows the
values of . The proposed method performs almost the
same amount (0.2% larger) of erase operations as Fixed_
Optimal and has 2.9% larger than Normal on average.

The differences in between Normal and the other
methods are relatively large especially for Web trace. It is
due to long idle periods in the trace. During the long idle
periods, the background operation manager has more
chances to execute extra operations. Thus, idle-time exploiting
methods show relatively larger than Normal. Further-
more, since ITEX and Fixed_Optimal give much longer
than FlexFS, they execute even more extra operations than
FlexFS. Thus, their s tend to be larger than those ofNormal
and FlexFS as shown in Table 7.

In addition to , since an block erasure is usually accom-
panied by live-page copying, we also measure the number of
live pages copied and show the results in Table 8. Similar to

, three idle-time exploiting methods copy more live pages
than Normal. Quantitatively, the difference between the pro-
posed method and Normal is 5.51% on average while Web
trace incurs the maximum difference, which is 14.65%. Even

TABLE 6
Real Values of (ms)

TABLE 7
Real Values of

TABLE 5
Real Values of (ms)
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though the ratio is not small, the overhead is marginal com-
pared to the improvement in average write latency achieved
by the proposed method, which is 87% as shown in
Section 6.3.1.

Additionally, since the life-time of NFMs is affected by
standard deviation of each NFM block’s erase count, the
values are shown in Table 9. If the proposed method would
incur large increase in standard deviation compared to Nor-
mal, the life-time ofNFMs could be degraded even though the
variation of caused by idle-time exploiting methods is not
huge. However, as shown in Table 9, the difference in stan-
dard deviation for four methods are small. Furthermore, the
proposed method shows smaller standard deviation than
Normal except for Seq trace. Qunatitatively, FlexFS, Adaptive
and Fixed_Optimal show 2.8%, 4.1% and 4.1% smaller stan-
dard deviation than Normal on average. Even for Seq trace,
the increase is negligible since it is less than 1%.

Even though the idle-time exploiting methods including
the proposed method shows the smaller standard deviation
than Normal for current simulation results, standard devia-
tion largely depends on the wear-leveling policy the FTL
employs and theproposedmethod is orthogonal to thepolicy.
Therefore, the distribution of block erasures will converge to
the samepoint eventually regardless of the exploitation of idle
periods by the proposed method.

6.3.5 Erase-Aware Latency Improvement
Putting together and , Fig. 7 depicts the efficiency of
three different methods. Normal is omitted since its efficiency
is zero. On average, the proposed method achieves 89% of
efficiency compared to Fixed_Optimalwhile FlexFSdoes only
60%. Moreover, in contrast to of FlexFS which fluctuates
with varying traces, ITEX maintains the similar level of
regardless of traces except VM trace due to its adaptability.

ForPhotoshopandWeb traces, of FlexFS is 7%and16%
larger than Fixed_Optimal, respectively. This is because, as
explained in Section 6.3.3, FlexFS is suitable for traces contain-
ing long idle periods. It can not only exploit proper (long
enough) idle periods but also reduce speculative execution of
extra operations which reduces redundant erase counts.
Therefore, its efficiency representedby canbe ameliorated
despite of its lower performance improvement. As a future

work, ITEX will be improved to reduce redundant execution
of extra operations even with long idle periods.

6.4 Parameter Sensitivity Analysis and Optimization
of ITEX

In the following sections, we show how the optimal configu-
ration of ITEX, which is {1, 10, LF}, is obtained. The sections
may not only give the details of the optimal configuration, but
also seeds of optimization for designers who consider differ-
ent metrics as their major metrics.

6.4.1 Impact of
The overall trends shown in Fig. 8 show that smaller can
give longer idle-time. The configuration of ITEX except
is fixed, i.e., LF policy and .

According to our analysis, there are two major drawbacks
of coarse step size, i.e., large . First, since the background
operationmanager starts towork only after , the utilizable
length of each idle period is reduced by . Therefore, if

is large, the reduction also becomes large, thus is
decreased.

Second, the decision module ignores idle periods smaller
than . In other words, the decision module loses ability
to tune for mid-range idle periods, i.e., idle periods
greater than zero but shorter than .When themid-range
idle periods are exploited, it may incur service penalties but

Fig. 7. normalized to that of Fixed_Optimal.

Fig. 8. of from 1 ms to 10 ms, normalized to that of 1 ms.

TABLE 8
Number of Live-Page Copying

TABLE 9
Standard Deviation of Each NFM Block’s Erase Count
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also reduce simultaneously. As a result, thefine-grained
enables ITEX to minimize the sum of and ,

not only and the process will be done automatically by
the HMM modeling of the decision module.

We do not consider smaller than a millisecond since
NFM commands contained by extra operations usually
require milliseconds of execution time. Hence, too small

cannot incur sufficient changes of . Moreover,
adaptation speed would be too slow to track the dynamically
changing behavior of input patterns. Consequently, 1 ms is
chosen as the best .

6.4.2 Impact of Scheduling Policy
Fig. 9 shows the effects of twodifferent scheduling policies, SF
and LF, on under various values of for theWeb trace.
Even though only the result for the Web trace is depicted, all
other traces have similar trends. Since LF policy provides
lower regardless of the values of , the background
operation manager of ITEX utilizes LF policy.

This phenomenon is expected because LF policy can
reduce the probability that NFSDs execute long extra phases,
since LF policy selects extra operations requiring longest time
first. On the other hand, SF policy severely suffers from high

in the region of large values, since the background
operation manager has fewer chances to execute expensive
extra operations, as larger values are used. Hence, long

of SF policy induces freezing phenomenon explained in
Section 6.2.

6.4.3 Impact of
As shown in Fig. 10, efficiency represented by becomes
optimal around the point %. The existence of the
optimal pointmeans that the -based aggressiveness control
of the background operation manager offers a trade-off
between and latency improvement.

Fig. 10 shows that SF policy outperforms LF policy for
almost values, unlike as shown in the previous
section. This is explained by the fact that is dominated
by , not . Since SF policy executesmore extra operations
than LF policy does with the same given idle-time, over-
provisioning blocks havemore room for updated data. There-
fore, of SF policy is shorter than that of LF policy. To be

specific, SF policy has 1% better average latency than LF
policy at . However, at the same time, it experiences
10% worse than LF policy, thus we select LF policy for
the background operation manager.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed an extended and aggressive
method to exploit the idleness of NFSDs. The experimental
results obtained with a representative hybrid-mapped FTL
indicate that the proposed method exhibits much better
performance than previous schemes that have naive solutions
to decidewhen andhow idle periods areused.Quantitatively,
in terms of the average write latency, the performance of the
proposed scheme is 74% better than an existing method
(FlexFS) and is within 9% of what is obtained with optimal
cases through a time consuming off-line simulation. For the
performance improvement, the proposed method spends
only 2.9% larger erase count.

In the future, there are a few ways to extend the proposed
method. First of all, our decision module can be improved by
taking into account the characteristic of idle-time in addition
to execution time of operation. It may give more accurate and
faster adaptation. Additionally, power consumption is
also another candidate to be considered by the decision
module or background operation manager. ITEX may be
extended to reduce or minimize power consumption by
choosing proper idle periods and executing operaions.
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